One-boundary Temperley–Lieb algebras in the XXZ and loop models

نویسندگان

  • A Nichols
  • J de Gier
چکیده

We give an exact spectral equivalence between the quantum group invariant XXZ chain with arbitrary left boundary term and the same XXZ chain with purely diagonal boundary terms. This equivalence, and a further one with a link pattern Hamiltonian, can be understood as arising from different representations of the one-boundary Temperley–Lieb algebra. For a system of size L these representations are all of dimension 2L and, for generic points of the algebra, equivalent. However, at exceptional points they can possess different indecomposable structures. We study a centralizer of the one-boundary Temperley–Lieb algebra in the ‘non-diagonal’ spin-12 representation and find its eigenvalues and eigenvectors. In the exceptional cases this centralizer becomes indecomposable. We show how to get a truncated space of ‘good’ states. The indecomposable part of the centralizer leads to degeneracies in the three mentioned Hamiltonians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Temperley-Lieb algebra and its generalizations in the Potts and XXZ models

We discuss generalizations of the Temperley-Lieb algebra in the Potts and XXZ models. These can be used to describe the addition of different types of integrable boundary terms. We use the Temperley-Lieb algebra and its one-boundary, two-boundary, and periodic extensions to classify different integrable boundary terms in the 2, 3, and 4-state Potts models. The representations always lie at crit...

متن کامل

N ov 2 00 4 One - boundary Temperley - Lieb algebras in the XXZ and loop models

We give an exact spectral equivalence between the quantum group invariant XXZ chain with arbitrary left boundary term and the same XXZ chain with purely diagonal boundary terms. This equivalence, and a further one with a link pattern Hamiltonian, can be understood as arising from different representations of the one-boundary Temperley-Lieb algebra. For a system of size L these representations a...

متن کامل

Bethe Ansatz for the Temperley-Lieb loop model with open boundaries

We diagonalise the Hamiltonian of the Temperley-Lieb loop model with open boundaries using a coordinate Bethe Ansatz calculation. We find that in the groundstate sector of the loop Hamiltonian, but not in other sectors, a certain constraint on the parameters has to be satisfied. This constraint has a natural interpretation in the Temperley-Lieb algebra with boundary generators. The spectrum of ...

متن کامل

Koornwinder polynomials and the XXZ spin chain

Nonsymmetric Koornwinder polynomials are multivariable extensions of nonsymmetric Askey-Wilson polynomials. They naturally arise in the representation theory of (double) affine Hecke algebras. In this paper we discuss how nonsymmetric Koornwinder polynomials naturally arise in the theory of the Heisenberg XXZ spin1 2 chain with general reflecting boundary conditions. A central role in this stor...

متن کامل

Raise and Peel Models and Pascal’s hexagon combinatorics

The open spin 1/2 XXZ chain is described in terms of the Temperley-Lieb algebra extended by two boundary generators. For specific values of its parameters the algebra comes to a semigroup regime and the model can be attached a stochastic interpretation. The corresponding 3 cases Raise and Peel Models are defined and combinatorial properties of their stationary states are investigated. A relatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005